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This paper is a proposal to embed tree-shaped vasculatures in a wall designed such that the wall with-
stands without excessive hot spots the intense heating that impinges on it. The vasculature is a quilt of
square-shaped panels, each panel having a tree vasculature that connects the center with the perimeter.
The coolant may flow in either direction, center–perimeter, or perimeter–center, although here only the
center–perimeter flow direction is illustrated. Numerical simulations of conjugate heat and fluid flow in
three directions show that it is possible to determine all the optimal geometric features of vasculatures
with up to three levels of bifurcation (n = 3). The global performance is evaluated in terms of the overall
thermal resistance, pressure difference, flow resistance and pumping power. The improvements in global
performance diminish as the number of bifurcation levels increases. No flow architecture is universally
superior. The dendritic designs are superior at the low and high ends of the pressure difference range.
The radial designs are superior at intermediate pressure difference numbers.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Constructal theory guides engineers toward the discovery of
efficient flow architectures for fluid, mass, energy and movement
in general. The emerging designs are validated by comparisons
with nature, in animate and inanimate systems. The constructal
law recognizes the tendency of all flow systems to seek and find
configurations for greater access in time: ‘‘For a finite-size flow
system to persist in time (to live), it must evolve in such a way that
it provides easier access to the currents that flow through it” [1–6].
The constructal law is not about what flows – fluid, energy,
momentum, goods, or people – but about how the flow system ac-
quires its architecture.

For example, dendritic flow architectures are derived from the
constructal law as flow structures that connect effectively one
point (source, or sink) and an infinity of points (curve, area, or vol-
ume). In a constructal tree there are at least two flow modes. The
slow mode means diffusion, seepage, and the all high-unit-cost
processes such as walking and hand delivery. These flows are allo-
cated to the interstices of the tree architecture. The fast mode re-
sides in channels with high conductivity and high permeability,
such as the streams of water and vehicular traffic. In the convec-
tion cooling of a vascularized wall under intense heating, the chan-
nels are occupied by the convecting fluid, and the interstices are
the solid structure that conducts the heat to the flow channels.
ll rights reserved.

: +1 919 660 8963.
Interstices and channels are optimally allocated to each other,
and the result – the tree – represents the balance between the
resistance across interstices and the resistance along channels.

Tree-shaped architectures offer lower pumping power
requirements and higher ‘densities’ of heat and mass transfer
than conventional architectures with bundles of parallel chan-
nels, or stacks of identical elements [7–15]. Possible applications
are fuel cells and electronics packaging, which is an essential
technology in thermal control. At much larger scales, the same
concept can be applied to the design of thermal protection of so-
lid walls in burners used in metallurgy, power plants and distil-
lation plants.

In this paper, we propose to use dendritic flow architectures as
a ‘‘fire wall” concept (Fig. 1) for the thermal management of future
high-performance vehicles. The current literature reviewed in Ref.
[16] suggests that the switch from classical architectures to den-
dritic architectures represents the future of high-compactness
technologies such as the cooling of electronics (avionics) and the
aggregation of fuel cells into high-power units with minimum
weight.

2. Numerical model

Consider first the three-dimensional structure shown in Fig. 2.
The structure consists of a square slab 2L � 2L with the thickness
t. The slab is insulated except on the bottom surface where it re-
ceives the uniform heat flux q 0 0. The body is cooled by fluid that
flows through ducts of square cross-section (D0 � D0), which are
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Nomenclature

Be dimensionless pressure difference, Eq. (9)
cP specific heat at constant pressure (J kg�1 K�1)eC specific heat ratio, cP;s=cP;f
D size of the square ducts (m)
k thermal conductivity of fluid, (W m�1 K�1)ek thermal conductivity ratio, ks/kf

L length (m)em dimensionless mass flow rate
n number of bifurcations
P pressure (Pa)
Pr Prandtl number, m/a
q0 0 heat flux (W m�2)
t thickness (m)
T temperature (K)
V velocity (m/s)
Vp total volume occupied by ducts (m3)
Vt body volume (m3)
x, y, z coordinates (m)

Greek symbols
a thermal diffusivity (m2/s)
a, b, c, d angles (�)
l viscosity (kg s�1 m�1)

q density (kg m�3)eq density ratio, qs/qf

U volume fraction, Vp/Vt

Subscripts
f fluid
max maximum
m minimum
mm minimized twice
mmm minimized three times
o optimal
oo optimized twice
p path
ref reference
s solid
t total
tr triangle

Superscripts
(�) dimensionless variables, Eqs. (9) and (10)
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embedded in the slab. The ducts are dug into the top surface of the
slab. They continue with 90� turns [see the position (0, y1, t)] and
lead to the bottom surface where they bifurcate on the way to
the two outlets located in the corners of the bottom surface. The
flow is driven by the pressure difference DP maintained between
the inlet (the center of the square slab) and the outlets shown in
Fig. 2.

The objective is to discover the flow structure that minimizes
the hot-spot temperatures regardless of their location. Because of
symmetry, consider only one-eighth of the body. There are two
constraints to consider. One is the total volume of the slab

V t ¼
1
2

L2 � Atr

� �
t ð1Þ

where Atr is the area of the triangle which is the upper surface of the
volume disregarded of the body

Atr ¼
D2

0

4 tanðp=8Þ ð2Þ
Fig. 1. Constructal ‘fire wall’ concept with embedded dendritic coolant
architecture.
The other constraint is the volume occupied by the ducts,

Vp ¼
L

cos a
þ t þ L� 5

2
D0

� �
D2

0 ð3Þ

where the angle a is defined in Fig. 2. The Vp and Vt constraints can
be combined to define the fixed volume fraction occupied by ducts,
Fig. 2. Design with radial channels for cooling a square slab heated uniformly on its
bottom side.



Table 2
Comparison between the results obtained using our code (pressure based solver –
coupled – upwind scheme [19]) and segregated solver – simple – upwind scheme [20]
(U = 0.05, y1 = 0.515 (a = 27.3�), Be = 108, Pr = 0.7.

Pressure based solver Segregated solvereT max
eT max

0.5211 0.5277

Fig. 3. The minimization of the maximum temperature with respect to ey1.
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/ ¼ Vp

V t
ð4Þ

The structure of Fig. 2 was morphed and optimized numerically
by simulating the three-dimensional temperature field in a large
number of configurations obtained by varying the coordinates of
point b (0,y1, t), or the anglea, and calculating the maximum temper-
ature Tmax. The search was for the configuration with minimum hot-
spot temperature Tmax. The flow was modeled as steady with con-
stant properties, and laminar in three dimensions. The three-dimen-
sional conservation equations are employed in the fluid region

oVi

oxi
¼ 0 ð5Þ

qf
oðViVjÞ

oxi

� �
¼ o

oxi
l oVj

oxi

� �
� oP

oxi
ð6Þ

qf
oðVicp;f TÞ

oxi
¼ o

oxi
kf

oT
oxi

� �
ð7Þ

The equation for steady state conduction is used for the solid body

o

oxi

oT
oxi

� �
¼ 0 ð8Þ

The results are presented in dimensionless form by using the
dimensionless variables

ex; ey;ez; eD0 ¼
x; y; z;D0

L
eT ¼ T � Tmin

q00L=kf
Pr ¼ m

a
Be ¼ DPL2

la
ð9Þ

eP ¼ P � Pref

DP
ks

kf
¼ ek cP;s

cP;f
¼ eC qs

qf
¼ eq ð10Þ

where Pref is the pressure at the outlets, Tmin is the fluid inlet tem-
perature, kf is the thermal conductivity of the fluid and l is the vis-
cosity. The dimensionless mass flowrate is defined as em ¼ m=mscale,
where the mass flow rate mscale is calculated for the optimal radial
configuration (ao = 27.3� e Be = 108). The boundary conditions are
shown in Fig. 2. The dimensionless pressure difference Be is defined
in accordance with the definition proposed by Bhattacharjee and
Grosshandler [17] and Petrescu [18].

Eqs. (5)–(8) were solved by using a CFD package based on
tetrahedral volume elements [19,20]. The grid was non-uniform in
all directions, and varied from one geometry to the next. The appro-
priate mesh size was determined by successive refinements, approx-
imately doubling the number of elements from one mesh size to the
next mesh size until the criterion jðeT j

max � eT jþ1
maxÞ=eT j

max < 5� 10�3

was satisfied. Here eT j
max represents the maximum temperature cal-

culated using the current mesh, and eT jþ1
max corresponds to the next

mesh, in which the number of elements was doubled. The following
results were obtained by using between 6 � 105 and 1.2 � 106 tetra-
hedral volume elements. Table 1 gives an example of how grid inde-
pendence was achieved. Note that the mesh was much more refined
in the fluid region than in the solid region.

The accuracy of these numerical results was tested by solving Eqs.
(5) and (8) with our current code, which uses a pressure based solver
(coupled/2nd order for pressure/22nd upwind scheme for momen-
tum and energy) [19], and comparing the results with the results ob-
tained using a segregated solver (Simple/Standard for pressure/1st
order upwind scheme for momentum and energy) [20] for the do-
main shown in Fig. 2. Table 2 shows that the results agree within
Table 1
Numerical tests showing the attainment of grid independence (U = 0.05, y1 = 0.515
(a = 27.3o), Be = 108, Pr = 0.7.

Number of elements eT j
max ðTj

max � Tjþ1
maxÞ=Tj

max

��� ���
Solid Fluid

547,751 138,905 0.5211 2.3 � 10�3

962,268 283,155 0.5223
1.3%. Convergence was achieved when the following maximal resid-
uals were reached: 10�4 for mass and momentum equations and
10�8 for energy equation. Double precision was used for all numer-
ical simulations.

3. Radial channels

Fig. 3 shows the minimization of the maximum temperatureeT max with respect to the length ey1 for several values of the volume
fraction /. We used Be = 108, Pr = 0.7, ek ¼ 0:9, eC ¼ 1:2 andeq ¼ 55:3. The optimal values (ey1;o,eT max;m) discovered in Fig. 3 are
summarized in Fig. 4. The minimal maximum temperature de-
creases when the value of the volume fraction / increases. The
optimal angle a and length ey1 are relatively insensitive to changes
in / .

Fig. 5 shows the temperature distribution on the top and bot-
tom surfaces of the square slab, in the best flow configurations
Fig. 4. The optimized geometry and performance as functions of volume fraction.



Fig. 5. The temperature distribution on the top and bottom surfaces, and the pressure field on the top surface of the channels for the optimized radial design.
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determined in Fig. 4. If each square slab is divided into four parts,
the top-left shows the results for / = 0.02, the top-right / = 0.03,
the bottom-right / = 0.05 and the bottom-left / = 0.09. The maxi-
mal temperatures occur on the bottom surface of the body (see
the red spots1 in Fig. 5), and their positions vary depending on
the angle a. Fig. 5 (bottom) shows the pressure distribution field
on the top surface of the channels corresponding to the same vol-
ume fractions as in Fig. 5.

4. Dendritic design with one level bifurcation

Consider next the design with Y-shaped channels shown in
Fig. 6. The structure is similar to Fig. 2, except that the duct bifur-
cates into two branches that form the angle b. The volume occu-
pied by the ducts is

Vp ¼ Va þ Vb þ V c þ Vd þ Ve ð11Þ

where

Va ¼ L0D2
0 ð12Þ

Vb ¼ ðL1 þ t � D1ÞD2
1 ð13Þ

Vc ¼ ðL2 þ t � D2ÞD2
2 ð14Þ

Vd ¼ y1D2
2 þ ðy3 � D1ÞD2

1 þ ðL� y1 � y3 � D1 � D2ÞðD2
1 þ D2

2Þ=2 ð15Þ

Ve ¼
1
2

D3
1 ð16Þ

The resulting structure has more degrees of freedom than in
Fig. 2. To begin with, the channel size ratios D0/D1 and D0/D2 vary,
but their optimal values are not the same as those recommended
by the Hess–Murray rule (D0/D1 = D0/D2 = 21/3). It was shown that
1 For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this paper. Fig. 6. Design with channels with one level of bifurcation.
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the Hess–Murray rule is valid only when the Y-shaped construct
has two identical branches (L1 = L2, D1 = D2), and that in general
the optimized D ratios depend on L ratios as follows [21]:

D0

D1
¼ 1þ L2

L1

� �3
" #1=3

ð17Þ

D0

D2
¼ 1þ L1

L2

� �3
" #1=3

ð18Þ

Because of Eqs. (17) and (18), the design of Fig. 6 is left with only
three degrees of freedom, namely y1, L0 and y2 (or a). Note also that
y3 = L � y1.
Fig. 7. The minimization of the hot-spot temperature with respect ey1, in the design
with one level of bifurcation.

Fig. 8. The temperature distribution on the top and bottom body surfaces, and the p
We optimized the dendritic design of Fig. 6 in the same way as
the radial design of Fig. 2. We searched for the configuration with
minimum eT max, regardless of the locations of the spots with eT max.
When the configuration with ‘‘optimal distribution of imperfec-
tion” [2] is found, the hot spots (shown in red in Figs. 5 and 8)
should have the same intensity, and, in addition, their color is
the least red. In such configurations, eT max is labeled eT max;m, no mat-
ter where eT max;m occurs. Fig. 7 shows that there is a minimal eT max

when the length ey1 varies and the other geometrical parameters
(ey3; eL0;a) are fixed. The optimal angle b decreases linearly wheney1 increases. Fig. 8 shows the temperature distribution on the
top and bottom surfaces of the configuration of Fig. 6, which was
optimized in Fig. 7. The pressure field in the top plane of the chan-
nels of the optimal geometry (Fig. 7) is shown in the lower part of
Fig. 8.

Fig. 9 shows the behavior of the hot-spot temperature for sev-
eral values of eL0. The minimum of the eT max (ey1)envelope represents
a second opportunity for optimization. The optimal configurations
determined this manner are summarized in Fig. 10, where the min-
imal maximum temperature eT max;m is reported as a function of eL0.
The corresponding optimal angle bo is proportional to eL0

In Fig. 10, we see that the minimum of the eT max;mðeL0Þ curve oc-
curs at fL0 ffi 0:44. This minimum is relatively shallow. On the ver-
tical line eL0 ¼ 0:44 we read the other geometrical features of the Y-
shaped configuration: b0 = 44.8� and ey1;0 ¼ 0:17. These features
correspond to the assumed ey3 = 0.25 and a = 25�. This optimal con-
figuration is sketched in Fig. 10.

5. Dendritic design with two levels of bifurcation

The design with two levels of bifurcation is shown in Fig. 11. The
structure is similar to Fig. 6, except that the two branches that form
the angle b now bifurcate into branches that form the angles c and d.
The volume occupied by the ducts is Vp = Va + Vb + Vc + Vd + Ve, where
ressure field on the top surface of the channels for the optimal design of Fig. 7.



Fig. 9. The effect of eL0 and ey1 on the hot-spot temperature in the design with one
level of bifurcation.
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Fig. 10. The minimization of the hot-spot temperature with respect to eL0 in the
design with one level of bifurcation.

Fig. 11. Dendritic design with two levels of bifurcation.
Va ¼
X6

i¼0

LiD
2
i ð19Þ

Vb ¼ ðt þ y1 þ h1=2ÞD2
4 ð20Þ

Vc ¼ ½t þ ðh1 þ h2Þ=2�D2
3 ð21Þ

Vd ¼ ½t þ ðh2 þ h3Þ=2�D2
6 ð22Þ

Ve ¼ ðt þ h3=2þ h4 þ 0:5DsÞD2
5 ð23Þ

The lengths t, hi, Li and Di, that appear in these equations are shown
in Fig. 11. The optimal ratios between diameters are given by Eqs.
(17) and (18) and

D1

D5
¼ 1þ L6

L5

� �3
" #1=3

;
D1

D6
¼ 1þ L5

L6

� �3
" #1=3

ð24Þ

D2

D3
¼ 1þ L4

L3

� �3
" #1=3

;
D2

D4
¼ 1þ L3

L4

� �3
" #1=3

ð25Þ

Eqs. (1), (2), (4), (17)–(25) and the degrees of freedom a, ey1, L0, L1/L0,
L2/L0, L3/L0, L4/L0, L5/L0 and L6/L0 are the information needed to cal-
culate the flow in each geometry with two levels of bifurcation.
Fig. 12. The effect of a and ey1 on the hot-spot temperature in the design with two
levels of bifurcation.

Fig. 13. The twice minimized hot-spot temperature in the design with two levels of
bifurcation.



Fig. 14. The temperature distribution on the top and bottom surfaces and the pressure field on the top surface of the channels for the optimal design of the type shown in
Fig. 13.
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Fig. 12 shows the effect of the angle a and the length ey1 on the max-
imal temperature. This figure shows that eT max decreases when the
length ey1 decreases. The best length is ey1;opt ¼ 0:02, for all the stud-
ied angles a.

These results are summarized in Fig. 13, where the optimal an-
gles for each bifurcation are also shown. The optimal geometry that
can be obtained using the set of constraints presented in this figure
is ao = 17�, y1,oo = 0.02, boo = 48�, doo = 67� and coo = 109�. The corre-
sponding minimized maximal temperature is eT max;mm ¼ 0:477. The
subscript ‘‘o” means that one parameter (the angle) was optimized
once while the subscripts ‘‘oo” and ‘‘mm” mean that the parame-
ters were optimized twice. The top and bottom views of the tem-
perature distribution calculated for this optimal structure are
Fig. 15. Dendritic design with three levels of bifurcation.
shown in the upper part of Fig. 14. This figure shows that the vas-
cularized configuration depresses the highest temperature by 8.5%
relative to the optimal radial configuration, and also improves the
distribution of the hot spots. The lower part of Fig. 14 also shows
the pressure field on the top surface of the channels of this optimal
configuration.
6. Dendritic design with three levels of bifurcation

The main features of the design with three levels of bifurcation
are shown in Fig. 15. The volume occupied by the ducts iseV p ¼ eV a þ eV b þ eV c þ eV d þ eV e þ eV f þ eV g, where
Fig. 16. The effect of ey1 and a on the hot-spot temperature in the design with three
levels of bifurcation.



Fig. 17. The minimization of the hot-spot temperature with respect to a in the
design with three levels of bifurcation.
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eV a ¼
X14

i¼0

eLi
eD2

1;
eV d ¼ ðeD3

14Þ=2 ð26Þ

eV b ¼
X14

i¼7

2eD3
i ;

eV e ¼
X13

i¼7

gyy1ðfD2
i þ eD2

iþ1Þ=2 ð27Þ

eV c ¼
X14

i¼7

ðt � 2eDiÞeD2
i ;

eV f ¼ fy1ðeD2
7 þ eD2

8Þ=2 ð28Þ

eV g ¼ ð2gyy1 � fy1ÞðeD2
13 þ eD2

14Þ=2 ð29Þ
Fig. 18. The temperature distribution on the top and bottom surfaces and the pressure
Fig. 17.
Note that the length gyy1 is calculated by usinggyy1 ¼ ð1� ðeD7 þ eD8 þ eD8=2þ eD9 þ eD10 þ eD11 þ eD12 þ eD14

þ 2eD13ÞÞ=9 ð30Þ
because it is the y distance between two adjacent ports in the plane
x = L. Note that fy1 is a new degree of freedom in the morphing of
the flow configuration. Again the relationships between diameter
ratios and length ratios are given by Eqs. (17), (18), (24) and (25)
and the following equations

eD3eD9

¼ 1þ
eL10eL9

 !3
24 351=3

;
eD5eD13

¼ 1þ
eL14eL13

 !3
24 351=3

ð31Þ

eD3eD10

¼ 1þ
eL9eL10

 !3
24 351=3

;
eD5eD14

¼ 1þ
eL14eL13

 !3
24 351=3

ð32Þ

eD4eD8

¼ 1þ
eL7eL8

 !3
24 351=3

;
eD6eD11

¼ 1þ
eL12eL11

 !3
24 351=3

ð33Þ

eD4eD7

¼ 1þ
eL8eL7

 !3
24 351=3

;
eD6eD12

¼ 1þ
eL11eL12

 !3
24 351=3

ð34Þ

To determine all the dimensions uniquely, it is necessary to solve Eqs.
(1), (2), (4), (17)–(33), (34). The degrees of freedom and parameters a,ey1, /, et ,eL0 and eLi=eL0, i = 1, 14, are the information needed to calculate
the geometry for the design with three levels of bifurcation. We fixed
the following parameters while optimizing the free variables a andey1: / = 0.5, et ¼ 0:1, eL0 ¼ 0:5 L1/L0 = 0.74, L2/L0 = 0.53, L3/L0 = 0.25,
L4/L0 = 0.3, L5/L0 = 0.53, L6/L0 = 0.47, L7/L0 = 0.3, L8/L0 = 0.32, L9/
L0 = 0.26, L10/L0 = 0.27, L11/L0 = 0.27, L12/L0 = 0.28, L13/L0 = 0.28 and
L14/L0 = 0.34. Fig. 16 shows the effect of the length ey1 and angle a
field on the top surface of the channels for the optimal design of the type shown in



Fig. 20. The behavior of the global thermal resistance versus of the global pressure
difference.

Fig. 21. The behavior of the global thermal resistance versus the pumping power.
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on the maximal temperature: there is an optimal angle for which the
hot-spot temperature is minimum.

The results developed in Fig. 16 are summarized in Fig. 17 where
ao � 14� and ey1;oo ¼ 0:038 emerge as optimal parameters for the de-
sign with three levels of bifurcation. The corresponding minimized
maximal temperature is eT max;mm ¼ 0:494. This configuration per-
forms 5.3% better when compared with the optimal radial configura-
tion, but it is 3.4% inferior relative to the optimal configuration with
two levels of bifurcation. The temperature distribution on the top
and bottom surfaces and the pressure field on the top surface of the
channels for the optimal design obtained in Fig. 17 is shown in Fig. 18.

7. Conclusions

In this paper, we outlined the main steps of the generation of
tree-shaped flow architecture for cooling that is imbedded to inter-
cept the intense heat flux that impinges on a wall. The flow archi-
tecture is configured as a patchwork of elemental square-shaped
slabs, each cooled with a tree-shaped vasculature (Fig. 1). The cool-
ant enters through the center of the element and exits through
ports distributed along the square perimeter.

The numerical simulations of heat and fluid flow in three dimen-
sions showed that it is possible to optimize the main features of the
tree-shaped configuration. As the complexity of each tree increases
from radial channels to three levels of bifurcation, the global thermal
resistance of the architecture decreases. The steps of improvement
become smaller as the number of bifurcation levels increases.
Diminishing returns put an end to the economical search for better
flow architectures. This ‘‘end” deserves further exploration, because
it is here that the merits of the cooling architecture must be properly
assessed against the merits of the design with respect to other con-
cerns such as overall pressure drop, and ease of assembly of opti-
mized panels on larger walls, e.g., Figs. 1 and 19.

Fig. 20 shows the behavior of the global thermal resistance as
function of the pressure difference maintained across the flow struc-
ture. When Be is of order 107, the radial designs (n = 0) offer lower
thermal resistance. When Be is of order 108, the dendritic configura-
tions perform better than radial configuration: the best is the n = 1
design. At the opposite end of the pressure difference range docu-
mented in this study (Be � 106), the dendritic design with one level
of bifurcation is again better than the radial design. These conclu-
sions are reinforced by Fig. 21, where on the abscissa we used the
Fig. 19. Larger body cooled with a patchwork of optimized building blocks such as the design proposed in Figs. 1 and 2.
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group emBe that is proportional to the pumping power required by
the design.

The chief conclusion is that there is not a single architecture
that is ‘‘best” over the entire range of applications (Be, or emBe).
The dendritic designs have their own domain of applicability,
and the radial designs have theirs. Important is to know the ‘‘tran-
sitions” between the winning flow architectures, i.e., when to use
which type of design.
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